skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bunji, Nelleke"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The nature of dark matter remains one of the greatest unsolved mysteries in elementary particle physics. It might well be that the dark matter particle belongs to a dark sector completely secluded or extremely weakly coupled to the visible sector. We demonstrate that gravitational waves arising from first-order phase transitions in the early Universe can be used to look for signatures of dark sector models connected to neutron physics. This introduces a new connection between gravitational-wave physics and nuclear physics experiments. Focusing on two particular extensions of the Standard Model with dark U(1) and SU(2) gauge groups constructed to address the neutron lifetime puzzle, we show how those signatures can be searched for in future gravitational-wave and astrometry experiments. 
    more » « less